4.3 Article

Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2014.07.028

Keywords

PLGA; Solvent casting; Thermally induced phase separation; Solvent leaching; Lauric acid

Funding

  1. SIRIM Berhad [03-03-02-SF0280]
  2. Malaysian Ministry of Science, Technology and Innovation
  3. Malaysian Ministry of Education and Universiti Teknologi Malaysia [R.J130000.7836.4 F123]

Ask authors/readers for more resources

This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp) + 1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp + 1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available