4.3 Article

Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2011.09.010

Keywords

Antimicrobial materials; Transition metal acid; Molybdenum oxide; Antibacterial coating; Sol-gel technique

Funding

  1. German Research Foundation (DFG) [ZO113/13-1]

Ask authors/readers for more resources

Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H2MoO4), which is based on molybdenum trioxide (MoO3). The modification of various materials (e.g. polymers, metals) with MoO3 particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available