4.3 Article

In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2010.11.017

Keywords

Degradation; Cell response; Magnesium alloy; Albumin; Simulated body fluid

Funding

  1. National Medical Research Council (Singapore) [NMRC/1100/2007]

Ask authors/readers for more resources

Magnesium alloys possess unique advantages to be used as biodegradable implants for clinical applications. In this study, in vitro cells responses and degradation behaviors of magnesium alloy M1A in simulated body fluid (SBF) and albumin-containing SBF (A-SBF) were systematically investigated. Cell responses, in terms of Cell morphology and cell proliferation, imply that M1A possesses good viability for MG63 cells. The corrosion behaviors of M1A are strongly affected by the addition of albumin through the combined effects of adsorption and chelation. Electrochemical testing indicates that such an absorbed albumin layer makes M1A to be more noble with a smaller corrosion current. Corrosion rate monitored by hydrogen evolution rate suggests that the quickly adsorbed albumin serves as an effective protective layer, resulting in a much slower hydrogen release rate at initial stage. With increasing immersion time, a higher corrosion rate is observed since the chelation effect exerts more significant acceleration effects on the removal of the passivation layer. The corrosion mode evaluated by surface morphology of the samples changes from a nonuniform-anisotropic mode for M1A in SBF to a uniform-isotropic mode for M1A in A-SBF. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available