4.3 Article

Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2009.04.011

Keywords

Calcium phosphate cement; Rapid conversion; Nanostructure; Mechanical properties; Nanoindentation; Osteoblast cell culture

Funding

  1. Spanish Ministry of Education and Science [MAT2002-03857]
  2. European Union Marie Curie EST Fellowship [MEST-CT-2004-504465]
  3. European Union Framework 6 Program

Ask authors/readers for more resources

The rational synthesis, comprehensive characterization. and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 +/- 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 +/- 3 MPa. Furthermore. nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be E-s = 23 +/- 3.5 and H = 0.7 +/- 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available