4.3 Article

Synthesis of hydroxyapatite crystals using titanium oxide electrospun nanofibers

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2006.11.007

Keywords

nanofibers; biomimetic; electrospinning; biomaterials; metal-ceramic nanocomposite

Ask authors/readers for more resources

Metal-ceramic nanocomposites have a special interest for biomedical applications such as in dental and bone implants. One interesting possibility to control the size of these materials is their fabrication on electrospun nanofibers. In this communication, we reported the use of bio-activated titanium oxide electrospun nanofibers as a template for the synthesis of hydroxyapatite: (HAp) [Ca-10(PO4)(6)(OH)(2)] crystals. Titanium oxide (TiO2) nanofibers were fabricated using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc) via electrospinning and then chemically treated with NaOH followed by diluted HC1 to explore the possibility of enhancing the bioactivity. Thus obtained nanofibers were employed for the simulated body fluid (SBF) mediated biomimatic synthesis of HAp crystals. The composites were characterized by different physico-chemical (FT-IR, XPS, XRD, SEM, and EDX) techniques. Results showed that the activated TiO2 nanofibers served as an effective template for the assembly of plate like hydroxyapatite crystals. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available