4.0 Article

Surface Cellulose Modification with 2-Aminomethylpyridine for Copper, Cobalt, Nickel and Zinc Removal from Aqueous Solution

Journal

Publisher

UNIV FED SAO CARLOS, DEPT ENGENHARIA MATERIALS
DOI: 10.1590/S1516-14392012005000147

Keywords

cellulose; modification; 2-aminometylpyridine; sorption; cations

Funding

  1. FAPESP
  2. CNPq

Ask authors/readers for more resources

Cellulose was first modified with thionyl chloride, followed by reaction with 2-aminomethylpyridine to yield 6-(2'-aminomethylpyridine)-6-deoxycellulose. The resulting chemically-immobilized surface was characterized by elemental analysis, FTIR, C-13 NMR and thermogravimetry. From 0.28% of nitrogen incorporated in the polysaccharide backbone, the amount of 0.10 +/- 0.01 mmol of the proposed molecule was anchored per gram of the chemically modified cellulose. The available basic nitrogen centers attached to the covalent pendant chain bonded to the biopolymer skeleton were investigated for copper, cobalt, nickel and zinc adsorption from aqueous solution at room temperature. The newly synthesized biopolymer gave maximum sorption capacities of 0.100 +/- 0.012, 0.093 +/- 0.021, 0.074 +/- 0.011 and 0.071 +/- 0.019 mmol.g(-1) for copper, cobalt, nickel and zinc cations, respectively, using the batchwise method, whose data was fitted to different sorption models, the best fit being obtained with the Langmuir model. The results suggested the use of this anchored biopolymer for cation removal from the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available