4.0 Article

Microstructural Changes and Effect of Variation of Lattice Strain on Positron Annihilation Lifetime Parameters of Zinc Ferrite Nanocomposites Prepared by High Enegy Ball-milling

Journal

Publisher

UNIV FED SAO CARLOS, DEPT ENGENHARIA MATERIALS
DOI: 10.1590/S1516-14392012005000135

Keywords

nano-Zn-ferrites; ball-milling; Rietveld method; positron annihilation

Funding

  1. University of Burdwan

Ask authors/readers for more resources

Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol%) mixture of ZnO and alpha-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available