4.6 Article

Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

Journal

MATERIALS RESEARCH BULLETIN
Volume 46, Issue 8, Pages 1168-1176

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2011.04.019

Keywords

Nanostructures; Inorganic compounds; Chemical synthesis; Infrared spectroscopy; Microstructure

Ask authors/readers for more resources

Very unique core-shell ceria (cerium oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available