4.6 Article

Solvothermal synthesis of SrMoO4:Ln (Ln = Eu3+, Tb3+, Dy3+) nanoparticles and its photoluminescence properties at room temperature

Journal

MATERIALS RESEARCH BULLETIN
Volume 46, Issue 3, Pages 333-339

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2010.12.016

Keywords

Optical materials; Chemical synthesis; X-ray diffraction; Luminescence

Funding

  1. National Basic Research Program of China [2007CB935502]
  2. National Natural Science Foundation of China (NSFC) [20871035, 50702057, 50872131, 00610227]
  3. China Postdoctoral Special Science Foundation [200808281]
  4. Harbin Sci.-Tech. Innovation Foundation [2009RFQXG045]

Ask authors/readers for more resources

Rare-earth ions (Eu3+, Tb3+, Dy3+) doped SrMoO4 nanoparticles were prepared by solvothermal route using oleic acid as surfactant to control the particle shape and size. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), photoluminescence spectra (PL) and the kinetic decay times were applied to characterize the obtained samples. The XRD patterns reveal that all the doped samples are assigned to the scheelite-type tetragonal structure of SrMoO4 phase. In addition, the as-synthesized SrMoO4:Ln (Ln = Eu3+, Tb3+, Dy3+) particles are high purity well crystallized and with the average size of 30-50 nm. The possible formation process of SrMoO4:Ln (Ln = Eu3+, Tb3+, Dy3+) nanoparticles have been discussed as well. Upon excitation by ultraviolet radiation, the as-synthesized SrMoO4:Ln (Ln = Eu3+, Tb3+, Dy3+) nanoparticles exhibit the characteristic emission lines of corresponding Eu3+, Tb3+, Dy3+, respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available