4.6 Article

Quasi-cube ZnFe2O4 nanocrystals: Hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite

Journal

MATERIALS RESEARCH BULLETIN
Volume 45, Issue 7, Pages 755-760

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.materresbull.2010.03.025

Keywords

Composites; Nanostructures; Chemical synthesis; Catalytic properties

Funding

  1. Tianjin Normal University in China [5RL052]
  2. National NSFC [20771083]

Ask authors/readers for more resources

The fabrication and photocatalytic application of zinc ferrite nanocrystals were reported. Quasi-cube ZnFe2O4 nanocrystals with typical small sizes of 5-15 nm were successfully synthesized by a facile hydrothermal approach. ZnFe2O4/P25 nanocomposite was prepared by physically grinding the ZnFe2O4 nanocrystals with TiO2 (commercial Degussa P25) at ambient temperature, and it exhibited excellent photocatalytic activity for the mineralization of Rhodamine B. UV-vis measurement and photocatalytic test results showed that ZnFe2O4 nanocrystals exhibited effective band-gap coupling to P25 nanopowders by simply physical grinding without any surface modification or high-energy balling, which is usually adopted in conventional mixture process. This phenomenon can be attributed to the high surface activities of the as-obtained tiny ZnFe2O4 nanocrystals and commercial P25 nanoparticles. It may imply that the mixing process of composite materials would be simplified by further lowering the grain sizes of their component particles. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available