4.7 Article

Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves

Journal

RESOURCES CONSERVATION AND RECYCLING
Volume 103, Issue -, Pages 139-154

Publisher

ELSEVIER
DOI: 10.1016/j.resconrec.2015.06.008

Keywords

Aluminium; Mining; Systems dynamics; Reserves; Price

Funding

  1. European Commission
  2. German Federal Ministry of the Environment (BMU), Berlin
  3. Federal Environmental Protection Agency (UBA), Dessau, Germany

Ask authors/readers for more resources

The reserves, production from mines, supply of aluminium to society and mass fluxes of aluminium in society was assessed using an integrated systems dynamics model (ALUMINIUM) in order to reconstruct the past and investigate potential future scenarios. The investigations for input data show that the mineable aluminium reserves are large, but finite. We get an average value for the ultimately recoverable reserve to be about 20-25 billion ton aluminium. The production of aluminium at present is 50 million ton per year. Continuing business-as-usual consumption with sustained global population growth above 7 billion people combined with a decline in cheap fossil fuels, aluminium may in the long perspective be a more expensive product than today. Should the event of a need for substituting a significant part of copper, iron, steel and stainless steel with aluminium arise, the time to scarcity for aluminium could become an issue within the next four decades. Ultimately, continuation of the aluminium production may in the future become limited by access to energy. Whereas aluminium primary production may go through a peak in the next decades, supply to society will not reach a peak before the end of the century, because of recycling from the stock in society. The model suggests that the supply level will decline to 2014 level sometime around 2250, or 230 years into the future. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available