4.6 Article

In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery

Journal

MATERIALS LETTERS
Volume 64, Issue 19, Pages 2076-2079

Publisher

ELSEVIER
DOI: 10.1016/j.matlet.2010.06.039

Keywords

SnO2; Nanomaterials; Graphene; Nanocomposite; Lithium ion battery

Funding

  1. 973 National Key Basic Research Program of China [2007CB310500]
  2. Chinese Ministry of Education [705040]
  3. National Natural Science Foundation of China [90606009]

Ask authors/readers for more resources

SnO2/graphene nanocomposite was prepared via an in situ chemical synthesis method. The nanocomposite was characterized by X-ray diffraction, filed emission scanning electron microscope and transmission electron microscope, which revealed that tiny SnO2 nanoparticles could be homogeneously distributed on the graphene matrix. The electrochemical performance of the SnO2/graphene nanocomposite as anode material was measured by galvanostatic charge/discharge cycling. The SnO2/graphene nanocomposite showed a reversible capacity of 665 mAh/g after 50 cycles and an excellent cycling performance for lithium ion battery, which was ascribed to the three-dimensional architecture of SnO2/graphene nanocomposite. These results suggest that SnO2/graphene nanocomposite would be a promising anode material for lithium ion battery. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available