4.7 Article

EBSD imaging of orientation relationships and variant groupings in different martensitic alloys and Widmanstatten iron meteorites

Journal

MATERIALS CHARACTERIZATION
Volume 94, Issue -, Pages 93-110

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2014.05.015

Keywords

Electron backscatter diffraction; Martensite; Meteorite; Orientation relationship; Variant selection; Packets

Ask authors/readers for more resources

An automatic method to colorize and quantify the classical Pitsch, Kurdjumov-Sachs, Greninger-Troiano and Nishiyama-Wasserman orientation relationships in the electron backscatter diffraction maps of martensitic/bainitic steels is detailed. Automatic analysis of variant grouping is also presented. The method was applied to low and high carbon steels, and to iron-nickel Widmanstatten meteorites. Many results of recent literature are confirmed. In low carbon steels the individual laths exhibit continuous orientation gradients between the classical orientation relationships, and the laths tend to be grouped by close-packed plane (morphological) packets. A crystallographic scenario describing the formation of the packets is proposed on the base of the one-step model. When the carbon content increases, the orientation spreading is reduced; and martensite tends to form plate groups and burst configurations. In iron-nickel meteorites, the centimeter long Widmanstatten laths do not exhibit continuous orientation gradients but are constituted of subgrains with uniform orientation relationship; the kamacite grains in the plessite regions are grouped into Bain zones, probably due to a recrystallization during the slow cooling of the meteorites. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available