4.6 Article

Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices

Journal

MATERIALS AND STRUCTURES
Volume 47, Issue 6, Pages 925-936

Publisher

SPRINGER
DOI: 10.1617/s11527-013-0103-8

Keywords

Aged wood; Norway spruce; Dynamic elastic modulus; Shear modulus; Ultrasound velocity

Ask authors/readers for more resources

Due to ecological and environmental factors, re-using aged wood is becoming more and more important, also in applications where mechanical strength plays a central role. The aim of this study was to examine specific mechanical parameters of naturally aged and dried wood and to better understand the influence of aging on the elastic behaviour of wood. To this aim, measurements on boards and on small, clear wood specimens were carried out. Ultrasound velocities of longitudinal and, in some cases, of transversal waves were measured to determine dynamic elastic moduli and shear moduli. The measurements were performed on structural timber of aged Norway spruce (aged wood) and compared with specimens of recently cut and kiln dried timber of the same species (recent wood) as a reference with comparable density properties and average annual ring width. The measurements revealed higher values of dynamic elastic modulus for aged wood in the longitudinal and radial directions, but no significant difference was found in the tangential direction or in the shear moduli. It is supposed that the difference is more likely a consequence of variability in densities and the structure parameters (annual ring structure, microfibril angle, growth conditions) rather than a consequence of the wood age. The relation between the dynamic elastic modulus in the longitudinal direction and wood density was nearly the same for aged and recent wood specimens, so with increased prudence, grading methods developed for recent wood can also be applied for aged wood.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available