4.5 Review

Progress of Nanofluid Application in Machining: A Review

Journal

MATERIALS AND MANUFACTURING PROCESSES
Volume 30, Issue 7, Pages 813-828

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2014.973583

Keywords

G-ratio; Roughness; Milling; Turning; Grinding; Nanofluids; MQL; Drilling

Ask authors/readers for more resources

A colloidal mixture of nanometer-sized (<100nm) metallic and non-metallic particles in conventional cutting fluid is called nanofluid. Nanofluids are considered to be potential heat transfer fluids because of their superior thermal and tribological properties. Therefore, nano-enhanced cutting fluids have recently attracted the attention of researchers. This paper presents a summary of some important published research works on the application of nanofluid in different machining processes: milling, drilling, grinding, and turning. Further, this review article not only discusses the influence of different types of nanofluids on machining performance in various machining processes but also unfolds other factors affecting machining performance. These other factors include nanoparticle size, its concentration in base fluid, lubrication mode (minimum quantity lubrication and flood), fluid spraying nozzle orientation, spray distance, and air pressure. From literature review, it has been found that in nanofluid machining, higher nanoparticle concentration yields better surface finish and more lubrication due to direct effect (rolling/sliding/filming) and surface enhancement effect (mending and polishing) of nanoparticles compared to dry machining and conventional cutting fluid machining. Furthermore, nanofluid also reduces the cutting force, power consumption, tool wear, nodal temperature, and friction coefficient. Authors have also identified the research gaps for further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available