4.5 Article

Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method

Journal

MATERIALS AND MANUFACTURING PROCESSES
Volume 28, Issue 4, Pages 408-417

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10426914.2012.700159

Keywords

Entropy method; Fuzzy TOPSIS; Grinding wheel abrasive; Material selection; Ranking

Ask authors/readers for more resources

The efficiency of a grinding wheel and quality of surface finish of the machined component mainly depend on the type of abrasive material, abrasive grain size, bonding material, wheel grade, and wheel structure. Modern grinding wheels use various types of abrasive materials, ranging from aluminum oxide to partially stabilized zirconia, and also superabrasive materials, like CBN and diamond. Owing to diverse conflicting necessities, no distinct abrasive material can meet all the requirements of grinding applications. Every abrasive material has its own mechanical and physical properties that make it best for a particular application. Consequently, it is extremely important to select the suitable abrasive for a grinding wheel with the desired properties for enhanced surface finish and grinding performance. This paper considers a list of eight grinding wheel abrasives whose performance is evaluated based on seven criteria. Fuzzy technique for order performance by similarity to ideal solution method is applied to solve this grinding wheel abrasive material selection problem, and a complete ranking of the abrasive material alternatives is achieved. Synthetic polycrystal diamond, cubic boron nitride (CBN), and tungsten carbide, respectively, obtain the first, second and third ranks. Yttria stabilized zirconia is the worst preferred grinding wheel abrasive material. A Pareto optimality analysis also confirms this result.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available