4.7 Article

Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures

Journal

MATERIALS & DESIGN
Volume 56, Issue -, Pages 714-724

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2013.11.043

Keywords

Polymer-matrix composites; Aging; Thermal properties; Mechanical properties

Funding

  1. Tunisian aeronautical society

Ask authors/readers for more resources

This paper reports the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid laminated composites used in the reinforcement and/or the repair of aeronautic structures. These composites were manufactured by the hand lay- up process. Their physical, thermal and mechanical behaviors are discussed in terms of moisture absorption, thermal stability, tensile strength, elastic modulus, flexural strength, flexural modulus and abrasive wear resistance. The impact of hygrothermal aging on the mechanical properties of each composite group has been also investigated. The main results indicated that after water immersion, all composites showed significant moisture absorption especially for glass/epoxy composite. Thermogravimetric analysis showed that the hybrid composite presented the best thermal stability behavior while the glass/epoxy composite the bad behavior. The mechanical properties of the carbon/epoxy composites, in the bulk material, were considerably higher than those of the glass/epoxy; the hybrid structure presented intermediate mechanical properties. The same trend was also observed in terms of wear properties. Finally, a deleterious effect on the strength of all composites due to hygrothermal exposure was established. However, carbon/epoxy composites seem to be less susceptible to aging damage after 90 days at 90 degrees C. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available