4.5 Review

VIBRATIONAL SPECTROSCOPY OF BARE AND SOLVATED IONIC COMPLEXES OF BIOLOGICAL RELEVANCE

Journal

MASS SPECTROMETRY REVIEWS
Volume 28, Issue 3, Pages 468-494

Publisher

WILEY
DOI: 10.1002/mas.20215

Keywords

infrared photodissociation; spectroscopy; ions; biomolecules; solvation; zwitterion

Categories

Ask authors/readers for more resources

The low density of ions in mass spectrometers generally precludes direct infrared (IR) absorption measurements. The IR spectrum of an ion can nonetheless be obtained by inducing photodissociation of the ion using a high-intensity tunable laser The emergence of free electron lasers (FELs) and recent breakthroughs in bench-top lasers based on nonlinear optics have now made it possible to routinely record IR spectra of gas-phase ions. As the energy of one IR photon is insufficient to cause dissociation of molecules and strongly bound complexes, two main experimental strategies have been developed to effect photodissociation. In infrared multiple-photon dissociation (IR-MPD) many photons are absorbed resonantly and their energy is stored in the bath of vibrational modes, leading to dissociation. In the messenger technique a weakly bound van der Waals atom is detached upon absorption of a single photon. Fundamental, historical, and practical aspects of these methods will be presented. Both of these approaches make use of very different methods of ion preparation and manipulation. While in IR-MPD ions are irradiated in trapping mass spectrometers, the messenger technique is generally carried out in molecular beam instruments. The main focus of this review is the application of IR spectroscopy to biologically relevant molecular systems (amino acids, peptides, proteins). Particular issues that will be addressed here include gas-phase zwitterions, the (chemical) structures of peptides and their collision-induced dissociation (CID) products, IR spectra of gas-phase proteins, and the chelation of metal-ligand complexes. Another growing area of research is IR spectroscopy on solvated clusters, which offer a bridge between the gas-phase and solution environments. The development of state-of-the-art computational approaches has gone hand-in-hand with advances in experimental techniques. The main advantage of gas-phase cluster research, as opposed to condensed-phase experiments, is that the systems of interest can be understood in detail and structural effects can be studied in isolation. It will be shown that IR spectroscopy of mass-selected (bio)molecular systems is now well-placed to address specific questions on the individual effect of charge carriers (protons and metal ions), as well as solvent molecules on the overall structure. (C) 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:468-494, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available