4.3 Article

Fatty acids and stable isotopes (δ13C and δ15N) reveal temporal changes in narwhal (Monodon monoceros) diet linked to migration patterns

Journal

MARINE MAMMAL SCIENCE
Volume 31, Issue 1, Pages 21-44

Publisher

WILEY
DOI: 10.1111/mms.12131

Keywords

Monodon monoceros; diet; stable isotopes; fatty acids; temporal trends; long-term data; migration patterns

Funding

  1. Garfield Weston Foundation
  2. E. Scherer Memorial Scholarship
  3. NSTP
  4. NSERC
  5. Fisheries and Oceans Canada (DFO)
  6. Nunavut Wildlife Management Board
  7. ArcticNet Centre of Excellence

Ask authors/readers for more resources

Narwhals (Monodon monoceros) are sentinel species in the Arctic and to investigate marine food web changes from 1982-2011 we examined diet using fatty acids, N-15, and C-13, in narwhals from Baffin Bay (BB) and northern Hudson Bay (NHB). We predicted temporal changes would be greater in NHB due to a significant reduction in summer ice cover. In NHB, N-15 significantly increased, C-13 displayed a parabolic trend, and fatty acids gradually shifted, albeit not significantly, over time. N-15 was stable, C-13 decreased, and fatty acids significantly changed over time in BB. Stable isotope mixing models indicated a dietary reduction in capelin and increase in Greenland halibut from 1994-2000 to 2006-2011 in BB, while capelin was an important dietary component for narwhals in NHB in recent years (2006-2011). These dietary changes may be attributed to changes in sea ice and narwhal migration. Seasonal dietary changes, as evidenced by changes in blubber fatty acids and skin and muscle stable isotopes, were not as apparent in the NHB population, which may be indicative of a reduced migratory distance. Long-term monitoring of narwhal diet and migratory patterns associated with reduced sea ice provides invaluable information about how the marine ecosystem will redistribute with global warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available