4.1 Article

Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula

Journal

MARINE GENOMICS
Volume 9, Issue -, Pages 51-61

Publisher

ELSEVIER
DOI: 10.1016/j.margen.2012.12.001

Keywords

Marine planctomycetes; Sulfatases; Phylogenomics; Transcriptomics

Funding

  1. Max Planck Society

Ask authors/readers for more resources

The whole genome sequence of Rhodopirellula baltica SH1(T), published nearly 10 years ago, already revealed a high amount of sulfatase genes. So far, little is known about the diversity and potential functions mediated by sulfatases in Planctomycetes. We combined in vivo and in silico techniques to gain insights into the ecophysiology of planktomycetal sulfatases. Comparative genomics of nine recently sequenced Rhodopirellula strains detected 1120 open reading frames annotated as sulfatases (Enzyme Commission number (EC) 3.1.6.*). These were clustered into 173 groups of orthologous and paralogous genes. To analyze the functional aspects, 708 sulfatase protein sequences from these strains were aligned with 67 sulfatase reference sequences of reviewed functionality. Our analysis yielded 22 major similarity clusters, but only five of these clusters contained Rhodopirellula sequences homologous to reference sequences, indicating a surprisingly high diversity. Exemplarily, R. baltica SH1(T) was grown on different sulfated polysaccharides, chondroitin sulfate, lambda-carrageenan and fucoidan. Subsequent gene expression analyses using whole genome microarrays revealed distinct sulfatase expression profiles based on substrates tested. This might be indicative for a high structural diversity of sulfated polysaccharides as potential substrates. The pattern of sulfatases in individual planctomycete species may reflect ecological niche adaptation. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available