4.2 Article

Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago

Journal

MARINE ECOLOGY PROGRESS SERIES
Volume 485, Issue -, Pages 9-U30

Publisher

INTER-RESEARCH
DOI: 10.3354/meps10359

Keywords

Ooids; Carbonate sediment; Carbonate precipitation; 16S rRNA diversity; Bacterial community; Biofilm

Funding

  1. Industrial Associates of the University of Miami Center for Carbonate Research (CSL)

Ask authors/readers for more resources

The present study characterized bacterial communities associated with oolitic carbonate sediments from the Bahamas Archipelago, ranging from high-energy 'active' to lower energy 'non-active' and 'mat-stabilized' environments. Bacterial communities were analyzed using terminal restriction fragment length polymorphisms (TRFLP), clone analyses of the 16S rRNA gene, confocal laser scanning microscopy (CLSM) and the quantitative phenol-sulfuric acid assay for extracellular polymeric substances (EPS). Confocal imaging of oolitic grains stained with cyanine dye-conjugated lectin and EPS quantification demonstrated that all 3 environments harbored attached biofilm communities, but densities increased from the active to the mat-stabilized environment. Bacterial communities associated with all 3 settings were highly diverse and dominated by Proteobacteria (50 to 61%). Analysis of similarity (ANOSIM) and similarity percentages (SIMPER) revealed significant differences among the 3 environments in the relative abundance of Proteobacteria, Planctomycetes, Cyanobacteria, Chlorobi, and Deinococcus-Thermus. Bacterial primary production in the active shoal environment was associated with Rhodobacteraceae, Ectothiorhodospiraceae, and Chlorobi, whereas the lower energy environments appear to harbor a more complex consortium of aerobic photoautotrophs and anaerobic/aerobic anoxygenic phototrophs. The ubiquitousness of photosynthetizers, along with the presence of aerobic/anaerobic heterotrophic microbes (e.g. denitrifiers, sulfate-reducers, biofilm producers/degraders) and the gradient increase in biofilm production on ooid grains from active to mat-stabilized environments, support the potential involvement of these communities in biomineralization and carbonate precipitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available