4.2 Article

Symbiont diversity is not involved in depth acclimation in the Mediterranean sea whip Eunicella singularis

Journal

MARINE ECOLOGY PROGRESS SERIES
Volume 439, Issue -, Pages 57-71

Publisher

INTER-RESEARCH
DOI: 10.3354/meps09314

Keywords

Algal-coral interactions; Symbiodinium; 18S rDNA; Genetic diversity; Depth distribution; Photoacclimation; Eunicella singularis; Mediterranean Sea

Funding

  1. EU [IN TIME 36]
  2. ANR

Ask authors/readers for more resources

In symbiotic cnidarians, acclimation to depth and lower irradiance can involve physiological changes in the photosynthetic dinoflagellate endosymbiont, such as increased chlorophyll content, or qualitative modifications in the symbiont population in favour of better adapted strains. It has been argued that a lack of capacity to acquire new symbionts could limit the bathymetric distribution of the host species, or compromise its long-term survival in a changing environment. But is that always true? To address this question, we investigated the symbiont genetic diversity in Eunicella singularis, a Mediterranean sea whip species with a wide bathymetric distribution (10 to 50 m depth), which has recently suffered from mass mortalities after periods of abnormally high sea temperatures. We measured symbiont population densities and chlorophyll content in natural populations, and followed the response of the holobionts after reciprocal transplantations to deep and shallow depths. A total of 161 colonies were sampled at 2 depths (10 and 30 m) at 5 sites in the northwestern Mediterranean. All colonies harboured a single ribosomal Symbiodinium clade (A'), but a relatively high within-clade genetic diversity was found among and within colonies. This diversity was not structured by depth, even though the deeper colonies contained significantly lower population densities of symbionts and less chlorophyll. We did, however, reveal host-symbiont specificity among E. singularis and other Mediterranean cnidarian species. Transplantation experiments revealed a limit of plasticity for symbiont population density and chlorophyll content, which in turn questions the importance of the trophic role of Symbiodinium in E. singularis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available