4.5 Article

The release of dissolved nutrients and metals from coastal sediments due to resuspension

Journal

MARINE CHEMISTRY
Volume 121, Issue 1-4, Pages 224-235

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.marchem.2010.05.002

Keywords

Sediment resuspension; Trace metals; Silver; Boston Harbor; Erosion chamber

Funding

  1. Woods Hole Oceanographic Institution (WHOI)
  2. National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA16RG2273, R/G-28]
  3. National Science Foundation [OCE-0220892]
  4. U.S.Geological Survey through the USGS/WHOI
  5. WHOI Academic Programs Office
  6. University of Western Australia

Ask authors/readers for more resources

Coastal sediments in many regions are impacted by high levels of contaminants. Due to a combination of shallow water depths, waves, and currents, these sediments are subject to regular episodes of sediment resuspension. However, the influence of such disturbances on sediment chemistry and the release of solutes is poorly understood. The aim of this study is to quantify the release of dissolved metals (iron, manganese, silver, copper, and lead) and nutrients due to resuspension in Boston Harbor. Massachusetts, USA. Using a laboratory-based erosion chamber, a range of typical shear stresses was applied to fine-grained Harbor sediments and the solute concentration at each shear stress was measured. At low shear stress, below the erosion threshold, limited solutes were released. Beyond the erosion threshold, a release of all solutes, except lead, was observed and the concentrations increased with shear stress. The release was greater than could be accounted for by conservative mixing of porewaters into the overlying water, suggesting that sediment resuspension enhances the release of nutrients and metals to the dissolved phase. To address the long-term fate of resuspended particles, samples from the erosion chamber were maintained in suspension for 90 h. Over this time, 5-7% of the particulate copper and silver was released to the dissolved phase, while manganese was removed from solution. Thus resuspension releases solutes both during erosion events and over a longer timescale due to reactions of suspended particles in the water column. The magnitude of the annual solute release during erosion events was estimated by coupling the erosion chamber results with a record of bottom shear stresses simulated by a hydrodynamic model. The release of dissolved copper, lead, and phosphate due to resuspension is between 2% and 10% of the total (dissolved plus particulate phase) known inputs to Boston Harbor. Sediment resuspension is responsible for transferring a significant quantity of solid phase metals to the more bioavailable and mobile dissolved phase. The relative importance of sediment resuspension as a source of dissolved metals to Boston Harbor is expected to increase as continuing pollutant control decreases the inputs from other sources. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available