4.5 Article

Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China

Journal

MARINE CHEMISTRY
Volume 119, Issue 1-4, Pages 52-64

Publisher

ELSEVIER
DOI: 10.1016/j.marchem.2009.12.006

Keywords

DOC; Carbohydrate; Amino acid; Biodegradation; Pearl River estuary

Funding

  1. Natural Science Foundation of China [40576036, 90711005, 40821063]

Ask authors/readers for more resources

We investigated the distribution, degradation and dynamics of organic carbon and its major compound classes, carbohydrates and amino acids, based upon a cruise in the Pearl River estuary in April 2007. Dissolved oxygen (DO), nutrients, particulate organic carbon (POC), chlorophyll a (Chl a), dissolved organic carbon (DOC), total dissolved carbohydrates (TCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) as well as total dissolved amino acids (TAA, both dissolved free, DFAA, and combined components. DCAA) were measured along a salinity gradient. Community respiration and biodegradable DOC were also determined via both short term (within 3 days) and long term (lasting 30 days) incubation. DOC, MCHO, TCHO, DFAA and TAA concentrations were high in the upper reach of the Pearl River estuary and decreased rapidly downstream. Anthropogenic sewage input appeared to be an important source of the DOC pool in the upper estuary. DOC distribution was non-conservative during the estuarine mixing, showing a net consumption of DOC in the upper reach and in the low salinity (S<20) region of the Pearl River estuary. Changes in the relative compositions of carbohydrates (MCHO vs. PCHO) and amino acids (DFAA vs. DCAA) along the salinity gradient further indicated that different processes (biodegradation, flocculation, and phytoplankton production) had different influences on distributions of organic compound classes in this estuarine system. Our one-month incubation experiment further revealed that a substantial portion (15-45%) of DOC from the estuary was biodegradable. Bacterial respiration rates were much higher (0.12-5.8 mu mol O-2 L-1 h(-1)) than the DOC consumption rates, suggesting that there were other oxygen consumption processes, such as nitrification besides the aerobic respiration of organic matter in the Pearl River estuary, as inferred by the distribution of NH4+ and NO3-. We estimated that 5.3 x 10(8) g C d(-1) of DOC can be exported out from the Lingdingyang Bay (a major subestuary of the Pearl River estuary) to the continental shelf of the South China Sea during this low flow season. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available