4.6 Article

Abundance, Diversity and Activity of Sulfate-Reducing Prokaryotes in Heavy Metal-Contaminated Sediment from a Salt Marsh in the Medway Estuary (UK)

Journal

MARINE BIOTECHNOLOGY
Volume 14, Issue 3, Pages 363-381

Publisher

SPRINGER
DOI: 10.1007/s10126-011-9420-5

Keywords

Estuarine Sediment; Active Sulfate-reducing Prokaryotes; DNA Extraction Efficiency; dsrA Transcripts; SSCP; Phylogenetic Analysis; Heavy Metal Contamination

Funding

  1. European Union INTERREG

Ask authors/readers for more resources

We investigated the diversity and activity of sulfate-reducing prokaryotes (SRP) in a 3.5-m sediment core taken from a heavy metal-contaminated site in the Medway Estuary, UK. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene beta-subunit (dsrB) and taking into account DNA extraction efficiency. This showed that SRPs were abundant throughout the core with maximum values in the top 50 cm of the sediment core making up 22.4% of the total bacterial community and were 13.6% at 250 cm deep. Gene libraries for dsrA (dissimilatory sulfite reductase alpha-subunit) were constructed from the heavily contaminated (heavy metals) surface sediment (top 20 cm) and from the less contaminated and sulfate-depleted, deeper zone (250 cm). Certain cloned sequences were similar to dsrA found in members of the Syntrophobacteraceae, Desulfobacteraceae and Desulfovibrionaceae as well as a large fraction (60%) of novel sequences that formed a deep branching dsrA lineage. Phylogenetic analysis of metabolically active SRPs was performed by reverse transcription PCR and single strand conformational polymorphism analysis (RT-PCR-SSCP) of dsrA genes derived from extracted sediment RNA. Subsequent comparative sequence analysis of excised SSCP bands revealed a high transcriptional activity of dsrA belonging to Desulfovibrio species in the surface sediment. These results may suggest that members of the Desulfovibrionaceae are more active than other SRP groups in heavy metal-contaminated surface sediments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available