4.4 Article

Flux capacities and acclimation costs in Trichodesmium from the Gulf of Mexico

Journal

MARINE BIOLOGY
Volume 154, Issue 3, Pages 413-422

Publisher

SPRINGER
DOI: 10.1007/s00227-008-0933-z

Keywords

-

Ask authors/readers for more resources

Phytoplankton function and acclimation are driven by catalytic protein complexes that mediate key physiological transformations, including generation of photosynthetic ATP and reductant, and carbon and nitrogen fixation. Quantitation of capacities for these processes allows estimation of rates for key ecosystem processes, and identification of factors limiting primary productivity. We herein present molar quantitations of PSI, PSII, ATP synthase, RuBisCO and the Fe protein of nitrogenase of Trichodesmium collected from the Gulf of Mexico, in comparison to determinations for a range of cyanobacteria growing in culture. Using these measurements, estimates were generated for Trichodesmium capacities for carbon fixation of 1-3.4 g C g chl a(-1) h(-1) and nitrogen fixation of 0.06-0.17 g N g chl a(-1) h(-1), with diel variations in capacities. ATP synthase levels show that ATP synthesis capacity is sufficient to support these levels of carbon and nitrogen fixation, and that ATP synthase levels change over the day in accordance with the ATP demands of nitrogenase and RuBisCO activity. Levels of measured complexes indicate that Trichodesmium manifests n-type diel light acclimation through rapid changes in RuBisCO:PSII, supported by significant investment of cellular nitrogen. The plasticity in the levels and stoichiometry of these core complexes show that changes in the abundance of core protein complexes are an important component of acclimation and regulation of metabolic function by Trichodesmium populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available