4.7 Article

Geochemistry and organic petrology study of Kimmeridgian organic-rich shales in the Marib-Shabowah Basin, Yemen: Origin and implication for depositional environments and oil-generation potential

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 50, Issue -, Pages 185-201

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2013.09.012

Keywords

Kimmeridgian; Organic rich-shales; Amorphous; Oil-generative potential; Marib-Shabowah Basin; Yemen

Ask authors/readers for more resources

Kimmeridgian organic-rich shales of the Madbi Formation from the Marib-Shabowah Basin in western Yemen were analysed to evaluate the type of organic matter, origin and depositional environments as well as their oil-generation potential. Results of the current study establishes the organic geochemical characteristics of the Kimmeridgian organic-rich shales and identifies the kerogen type based on their organic petrographic characteristics as observed under reflected white light and blue light excitation. Kerogen microscopy shows that the Kimmeridgian organic-rich shales contain a large amount of organic matter, consisting predominantly of yellow fluorescing alginite and amorphous organic matter with marine-microfossils (e.g., dinoflagellate cysts and micro-foraminiferal linings). Terrigenous organic matters (e.g., vitrinite, spores and pollen) are also present in low quantities. The high contributions of marine organic matter with minor terrigenous organic matter are also confirmed by carbon isotopic values. The organic richness of the Kimmeridgian shales is mainly due to good preservation under suboxic to relatively anoxic conditions, as indicated by the percent of numerous pyritized fragments associated with the organic matter. The biomarker parameters obtained from mass spectrometer data on m/z 191 and m/z 217 also indicate that these organic-rich shales contain mixed organic matter that were deposited in a marine environment and preserved under suboxic to relatively anoxic conditions. The Kimmeridgian organic-rich shales thus have high oil and low gas-generation potential due to oil window maturities and the nature of the organic matter, with high content of hydrogen-rich Type II and mixed Type II-III kerogens with minor contributions of Type III kerogen. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available