4.7 Article Proceedings Paper

Erosion at inception of deep-sea channels

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 41, Issue -, Pages 48-61

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2012.03.006

Keywords

Deep-sea channels; Incipient channel; Erosional template; Deep-water; Hierarchy

Ask authors/readers for more resources

We present a general model for channel inception and evolution in the deep sea by integrating observations from two complementary datasets: (1) high-resolution multibeam bathymetry and chirp sub-bottom profiles of the Lucia Chica channel system on the seafloor offshore central California, and (2) the well-exposed channelized strata of the Tres Pasos Formation in southern Chile. The Lucia Chica channel system shows laterally offset, sub-parallel channels that evolved across a similar gradient, but display different architecture, reflecting the influence of channel maturity and intrinsic cyclicity of channel formation. The stratigraphically oldest channel is narrower with well-developed levees while the younger channelized features are broader and bounded by low-relief levees or no levees at all. The high-resolution Lucia Chica dataset is integrated with detailed field observations of channel axis-to-margin sedimentary facies relationships and the stratigraphic context afforded from depositional-dip continuity in outcrops of the Tres Pasos Formation. Numerous channels from the outcrop belt are characterized by initial erosional stages. By combining these two datasets with numerical analysis, experimental work, and previous interpretations of additional outcropping strata and seafloor examples, we hypothesize that an initial erosional template extending into a basin is a pre-requisite for creation of channels in deep-sea environments. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available