4.7 Article

Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 28, Issue 1, Pages 8-39

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2010.01.016

Keywords

Caribbean; South America; Oblique convergence; Paleogeography; Seismic; Subsidence

Funding

  1. American Chemical Society [40499-AC8]
  2. Caribbean Basins
  3. Tectonics
  4. Hydrocarbons (CBTH) Consortium at the Jackson School of Geo-sciences of the University of Texas at Austin
  5. NSF [EAR-0003588]

Ask authors/readers for more resources

Using a mega-regional dataset that includes over 20,000 km of on- and offshore 2D seismic lines and 12 wells, we illustrate three different stages of fault formation and basin evolution in the Caribbean arc-South American continent collisional zone. Transpressional deformation associated with oblique collision of the Caribbean arc migrates diachronously over a distance of similar to 1500 km from western Venezuela in Paleogene time (similar to 57 Ma) to a zone of active deformation in the eastern offshore Trinidad area. Each diachronous stage of pre-, syn-, and post-collisional basin formation is accompanied by distinct patterns of fault families. We use subsidence histories from wells to link patterns of long-term basinal subsidence to periods of activity of the fault families. Stage one of arc-continent collision: Initial collision is characterized by overthrusting of the south- and southeastward-facing Caribbean arc and forearc terranes onto the northward-subducting Mesozoic passive margin of northern South America. Northward flexure of the South American craton produces a foreland basin between the thrust front and the downward-flexed continental crust that is initially filled by clastic sediments shed both from the colliding arc and cratonic areas to the south. As the collision extends eastward towards Trinidad, this same process continues with progressively younger foreland basins formed to the east. On the overthrusting Caribbean arc and forearc terranes, north-south rifting adjacent to the collision zone initiates and is controlled by forward momentum of southward-thrusting arc terranes combined with slab pull of the underlying and subducting, north-dipping South American slab. Uplift of fold-thrust belts arc-continent suture induces rerouting of large continental drainages parallel to the collisional zone and to the axis of the foreland basins. Stage two: This late stage of arc-continent collision is characterized by termination of deformation in one segment of the fold-thrust belt as convergent deformation shifts eastward. Rebound of the collisional belt is produced as the north-dipping subducted oceanic crust breaks off from the passive margin, inducing inversion of preexisting normal faults as arc-continent convergence reaches a maximum. Strain partitioning also begins to play an important role as oblique convergence continues, accommodating deformation by the formation of parallel, strike-slip fault zones and backthrusting (southward subduction of the Caribbean plate beneath the South Caribbean deformed belt). As subsidence slows in the foreland basins, sedimentation transitions from a marine underfilled basin to an overfilled continental basin. Offshore, sedimentation is mostly marine, sourced by the collided Caribbean terranes, localized islands and carbonate deposition. Stage three: This final stage of arc-continent collision is characterized by: 1) complete slab breakoff of the northward-dipping South American slab; 2) east-west extension of the Caribbean arc as it elongates parallel to its strike forming oblique normal faults that produce deep rift and half-grabens; 3) continued strain partitioning (strike-slip faulting and folding). The subsidence pattern in the Caribbean basins is more complex than interpreted before, showing a succession of extensional and inversion events. The three tectonic stages closely control the structural styles and traps, source rock distribution, and stratigraphic traps for the abundant hydrocarbon resources of the on- and offshore areas of Venezuela and Trinidad. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available