4.7 Article

Formation history and physical properties of sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 28, Issue 2, Pages 427-438

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2010.03.005

Keywords

Mount Elbert; Permafrost; Gas hydrate; Seismic waves; Permittivity; Conductivity; Stress-volume response; Gas production

Funding

  1. DOE's National Energy Technology Laboratory

Ask authors/readers for more resources

The synthesis of available geological information and surface temperature evolution in the Alaska North Slope region suggests that: biogenic and deeper thermogenic gases migrated through fault networks and preferentially invaded coarse-grained layers that have relatively high hydraulic conductivity and low gas entry pressures; hydrate started forming before the beginning of the permafrost; eventually, the permafrost deepened and any remaining free water froze so that ice and hydrate may coexist at some elevations. The single tested specimen (depth 620.47-620.62 m) from the D unit consists of uncemented quartzitic fine sand with a high fraction of fines (56% by mass finer than sieve #200). The as-received specimen shows no evidence of gas present. The surface texture of sediment grains is compatible with a Fluvial-deltaic sedimentation environment and shows no signs of glacial entrainment. Tests conducted on sediments with and without THF hydrates show that effective stress, porosity, and hydrate saturation are the major controls on the mechanical and geophysical properties. Previously derived relationships between these variables and mechanical/geophysical parameters properly fit the measurements gathered with Mount Elbert specimens at different hydrate saturations and effective stress levels. We show that these measurements can be combined with index properties and empirical geomechanical relationships to estimate engineering design parameters. Volumetric strains measured during hydrate dissociation vanish at 2-4 MPa; therefore, minimal volumetric strains are anticipated during gas production at the Mount Elbert well. However, volume changes could increase if extensive grain crushing takes place during depressurization-driven production strategies, if the sediment has unexpectedly high in situ porosity associated to the formation history, or if fines migration and clogging cause a situation of sustained sand production. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available