4.5 Article

Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 73, Issue 6, Pages 2163-2173

Publisher

WILEY
DOI: 10.1002/mrm.25344

Keywords

diffusion-weighted imaging; spatiotemporal encoding; breast MRI; breast cancer; apparent diffusion coefficients

Funding

  1. Kamin-Yeda program of the Israel Ministry of Trade and Industry [711237]
  2. Helen and Kimmel Award for Innovative Investigation
  3. Perlman Family Foundation

Ask authors/readers for more resources

PurposeEvaluating the usefulness of diffusion-weighted spatio-temporal encoding (SPEN) methods to provide quantitative apparent diffusion coefficient (ADC)-based characterizations of healthy and malignant human breast tissues, in comparison with results obtained using techniques based on spin-echo echo planar imaging (SE-EPI). MethodsTwelve healthy volunteers and six breast cancer patients were scanned at 3T using scanner-supplied diffusion-weighted imaging EPI sequences, as well as two fully refocused SPEN variants programmed in-house. Suitable codes were written to process the data, including calculations of the actual b-values and retrieval of the ADC maps. ResultsSystematically better images were afforded by the SPEN scans, with negligible geometrical distortions and markedly weaker ghosting artifacts arising from either fat tissues or from strongly emitting areas such as cysts. SPEN-derived images provided improved characterizations of the fibroglandular tissues and of the lesions' contours. When translated into the calculation of the ADC maps, there were no significant differences between the mean ADCs derived from SPEN and SE-EPI: if reliable images were available, both techniques showed that ADCs decreased by nearly two-fold in the malignant lesion areas. ConclusionSPEN-based sequences yielded diffusion-weighted breast images with minimal artifacts and distortions, enabling the calculation of improved ADC maps and the identification of decreased ADCs in malignant regions. Magn Reson Med 73:2163-2173, 2015. (c) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available