4.5 Article

Hyperpolarized Butyrate: A Metabolic Probe of Short Chain Fatty Acid Metabolism in the Heart

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 71, Issue 5, Pages 1663-1669

Publisher

WILEY-BLACKWELL
DOI: 10.1002/mrm.24849

Keywords

dynamic nuclear polarization; butyrate; hyperpolarization; magnetic resonance spectroscopy; short chain fatty acids; ketone bodies; heart

Funding

  1. Medical Research Council
  2. British Heart Foundation
  3. Oxford Instruments Molecular Biotools
  4. MRC [G0601490] Funding Source: UKRI
  5. British Heart Foundation [PS/02/002/14893, RG/07/004/22659, FS/10/002/28078, FS/14/17/30634, PG/13/34/30216, RG/11/9/28921] Funding Source: researchfish
  6. Medical Research Council [G0601490] Funding Source: researchfish

Ask authors/readers for more resources

PurposeButyrate, a short chain fatty acid, was studied as a novel hyperpolarized substrate for use in dynamic nuclear polarization enhanced magnetic resonance spectroscopy experiments, to define the pathways of short chain fatty acid and ketone body metabolism in real time. MethodsButyrate was polarized via the dynamic nuclear polarization process and subsequently dissolved to generate an injectable metabolic substrate. Metabolism was initially assessed in the isolated perfused rat heart, followed by evaluation in the in vivo rat heart. ResultsHyperpolarized butyrate was generated with a polarization level of 7% and was shown to have a T-1 relaxation time of 20 s. These physical characteristics were sufficient to enable assessment of multiple steps in its metabolism, with the ketone body acetoacetate and several tricarboxylic acid cycle intermediates observed both in vitro and in vivo. Metabolite to butyrate ratios of 0.1-0.4% and 0.5-2% were observed in vitro and in vivo respectively, similar to levels previously observed with hyperpolarized [2-C-13]pyruvate. ConclusionsIn this study, butyrate has been demonstrated to be a suitable hyperpolarized substrate capable of revealing multi-step metabolism in dynamic nuclear polarization experiments and providing information on the metabolism of fatty acids not currently achievable with other hyperpolarized substrates. Magn Reson Med 71:1663-1669, 2014. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available