4.5 Article

Voxel Spread Function Method for Correction of Magnetic Field Inhomogeneity Effects in Quantitative Gradient-Echo-Based MRI

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 70, Issue 5, Pages 1283-1292

Publisher

WILEY-BLACKWELL
DOI: 10.1002/mrm.24585

Keywords

MRI; gradient echo; magnetic susceptibility; magnetic field inhomogeneities

Funding

  1. NIH [R01NS055963]

Ask authors/readers for more resources

PurposeMacroscopic magnetic field inhomogeneities adversely affect different aspects of MRI images. In quantitative MRI when the goal is to quantify biological tissue parameters, they bias and often corrupt such measurements. The goal of this article is to develop a method for correction of macroscopic field inhomogeneities that can be applied to a variety of quantitative gradient-echo-based MRI techniques. MethodsWe have reanalyzed a basic theory of gradient echo MRI signal formation in the presence of background field inhomogeneities and derived equations that allow for correction of magnetic field inhomogeneity effects based on the phase and magnitude of gradient echo data. We verified our theory by mapping effective transverse relaxation rate in computer simulated, phantom, and in vivo human data collected with multigradient echo sequences. ResultsThe proposed technique takes into account voxel spread function effects and allowed obtaining virtually free from artifacts effective transverse relaxation rate maps for all simulated, phantom and in vivo data except of the edge areas with very steep field gradients. ConclusionThe voxel spread function method, allowing quantification of tissue specific effective transverse relaxation rate-related tissue properties, has a potential to breed new MRI biomarkers serving as surrogates for tissue biological properties similar to longitudinal and transverse relaxation rate constants widely used in clinical and research MRI. Magn Reson Med 70:1283-1292, 2013. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available