4.5 Article

Comprehensive Framework for Accurate Diffusion MRI Parameter Estimation

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 70, Issue 4, Pages 972-984

Publisher

WILEY
DOI: 10.1002/mrm.24529

Keywords

diffusion tensor imaging; diffusion kurtosis imaging; least squares; maximum likelihood; noise estimation

Funding

  1. Institute for the Promotion of Innovation Through Science and Technology in Flanders (IWI-Vlaanderen)

Ask authors/readers for more resources

During the last decade, many approaches have been proposed for improving the estimation of diffusion measures. These techniques have already shown an increase in accuracy based on theoretical considerations, such as incorporating prior knowledge of the data distribution. The increased accuracy of diffusion metric estimators is typically observed in well-defined simulations, where the assumptions regarding properties of the data distribution are known to be valid. In practice, however, correcting for subject motion and geometric eddy current deformations alters the data distribution tremendously such that it can no longer be expressed in a closed form. The image processing steps that precede the model fitting will render several assumptions on the data distribution invalid, potentially nullifying the benefit of applying more advanced diffusion estimators. In this work, we present a generic diffusion model fitting framework that considers some statistics of diffusion MRI data. A central role in the framework is played by the conditional least squares estimator. We demonstrate that the accuracy of that particular estimator can generally be preserved, regardless the applied preprocessing steps, if the noise parameter is known a priori. To fulfill that condition, we also propose an approach for the estimation of spatially varying noise levels. Magn Reson Med, 70:972-984, 2013. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available