4.5 Article

Method for In Situ Characterization of Radiofrequency Heating in Parallel Transmit MRI

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 69, Issue 5, Pages 1457-1465

Publisher

WILEY
DOI: 10.1002/mrm.24374

Keywords

ultra-high-field MRI; radiofrequency power deposition; radiofrequency heating; specific absorption rate; local specific absorption rate; global specific absorption rate

Funding

  1. NIH [R01-EB011551, R01-EB000447]

Ask authors/readers for more resources

In ultra-high-field magnetic resonance imaging, parallel radiofrequency (RF) transmission presents both opportunities and challenges for specific absorption rate management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local specific absorption rate by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, this work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix were conducted in less than 200 min with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. (C) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available