4.5 Article

Three-Dimensional Micro-MRI Analysis of Cerebral Artery Development in Mouse Embryos

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 62, Issue 6, Pages 1431-1439

Publisher

WILEY
DOI: 10.1002/mrm.22113

Keywords

angiogenesis; basilar artery; carotid artery; Gli2 mutant mice; vascular development

Funding

  1. National Institutes of Health [R01 HL078665]

Ask authors/readers for more resources

Vascular system development involves a complex, three-dimensional branching process that is critical for normal embryogenesis. In the brain, the arterial systems appear to develop in a stereotyped fashion, but no detailed quantitative analyses of the mouse embryonic cerebral arteries have been described. In this study, a gadolinium-based contrast perfusion method was developed to selectively enhance the cerebral arteries in fixed mouse embryos. Three-dimensional magnetic resonance micro-imaging (micro-MRI) data were acquired simultaneously from multiple embryos staged between 10 and 17 days of gestation, and a variety of image analysis methods was used to extract and analyze the cerebral arterial patterns. The results show that the primary arterial branches in the mouse brain are very similar between individuals, with the patterns established early and growth occurring by extension of the segments, while maintaining the underlying vascular geometry. To investigate the utility of this method for mutant mouse phenotype analysis, contrast-enhanced micro-MRI data were acquired from Gli2(-/-) mutant embryos and their wild-type littermates, showing several previously unreported vascular phenotypes in Gli2(-/-) embryos, including the complete absence of the basilar artery. These results demonstrate that contrast-enhanced micro-MRI provides a powerful tool for analyzing vascular phenotypes in a variety of genetically engineered mice. Magn Reson Med 62: 1431-1439, 2009. (C) 2009 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available