4.5 Article

PARACEST MRI With Improved Temporal Resolution

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 61, Issue 2, Pages 399-408

Publisher

WILEY
DOI: 10.1002/mrm.21863

Keywords

MRI; PARACEST contrast agent; temporal resolution

Funding

  1. Northeastern Ohio Animal Imaging Resource Center
  2. NIH [R24CA110943]
  3. Case Center for Imaging Research

Ask authors/readers for more resources

PARAmagnetic Chemical Exchange Saturation Transfer (PARACEST) is a novel contrast mechanism for MRI. A PARACEST MRI methodology with high temporal resolution is highly desired for in vivo MRI applications of molecular imaging. To address this need, a strategy has been developed that includes a long selective saturation period before each repetition of a Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence. This strategy is suitable for the application of PARACEST contrast agents to environments with long T-1 relaxation times. An alternative strategy uses short selective saturation periods before the acquisition of each k-space trajectory to maintain steady state conditions, which can be implemented with a Fast Low Angle Shot (FLASH) pulse sequence. These short saturation periods lengthen the total scan time as compared to the first approach but compensate for the loss in PARACEST contrast related to T-1 relaxation. Both approaches have been demonstrated in vitro and in vivo with significantly improved temporal resolutions as compared to a conventional gradient-echo PARACEST method without sacrificing CNR efficiency. These demonstrations also adopted a strategy for measuring the PARACEST effect that only requires selective saturation at a single MR frequency, which further improves temporal resolution for PARACEST detection. Magn Reson Mod 61:399-408, 2009. (c) 2009 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available