4.4 Article

Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing

Journal

MAGNETIC RESONANCE IMAGING
Volume 30, Issue 2, Pages 230-246

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2011.09.008

Keywords

Magnetic resonance imaging (MRI); Multispectral; Segmentation; Classification; Seeded region growing (SRG)

Ask authors/readers for more resources

Magnetic resonance imaging (MRI) is a valuable diagnostic tool in medical science due to its capability for soft-tissue characterization and three-dimensional visualization. One potential application of MRI in clinical practice is brain parenchyma classification and segmentation. Based on fuzzy knowledge and modified seeded region growing, this work proposes a novel image segmentation method, called Fuzzy Knowledge-Based Seeded Region Growing (FKSRG), for multispectral MR images. In this work, fuzzy knowledge includes the fuzzy edge, fuzzy similarity and fuzzy distance, which are obtained from relationships between pixels in multispectral MR images and are applied to the modified seeded regions growing process. In conventional regions merging, the final number of regions is unknown. Therefore, a Target Generation Process is proposed and applied to support conventional regions merging, such that the FKSRG method does not over-or undersegment images. Finally, two image sets, namely, computer-generated phantom images and real MR images, are used in experiments to assess the effectiveness of the proposed FKSRG method. Experimental results demonstrate that the FKSRG method segments multispectral MR images much more effectively than the Functional MRI of the Brain Automated Segmentation Tool, K-means and Support Vector Machine methods. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available