4.4 Article

Novel diffusion tensor imaging methodology to detect and quantify injured regions and affected brain pathways in traumatic brain injury

Journal

MAGNETIC RESONANCE IMAGING
Volume 28, Issue 1, Pages 22-40

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2009.05.049

Keywords

Diffusion tensor imaging; Tractography; Normalization; Traumatic brain injury

Funding

  1. USA Medical Research and Material Command [W81XWH-07-1-0015]
  2. TATRC
  3. NIA-NIH [P50 AG05142]
  4. NATIONAL INSTITUTE ON AGING [P50AG005142] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Purpose: To develop and apply diffusion tensor imaging (DTI)-based normalization methodology for the detection and quantification of sites of traumatic brain injury (TBI) and the impact of injury along specific brain pathways in (a) individual TBI subjects and (b) a TBI group. Materials and Methods: Normalized DTI tractography was conducted in the native space of 12 TBI and 10 age-matched control subjects using the same number of seeds in each subject, distributed at anatomically equivalent locations. Whole-brain tracts from the control group were mapped onto the head of each TBI subject. Differences in the fractional anisotropy (FA) maps between each TBI subject and the control group were computed in a common space using a t test, transformed back to the individual TBI subject's head space, and thresholded to form regions of interest (ROIs) that were used to sort tracts from the control group and the individual TBI subject. Tract counts for a given ROI in each TBI subject were compared to group mean for the same ROI to quantify the impact of injury along affected pathways. The same procedure was used to compare the TBI group to the control group in a common space. Results: Sites of injury within individual TBI subjects and affected pathways included hippocampal/fomix, inferior fronto-occipital, inferior longitudinal fasciculus, corpus callosum (genu and splenium), cortico-spinal tracts and the uncinate fasciculus. Most of these regions were also detected in the group study. Conclusions: The DTI normalization methodology presented here enables automatic delineation of ROIs within the heads of individual subjects (or in a group). These ROIs not only localize and quantify the extent of injury, but also quantify the impact of injury on affected pathways in an individual or in a group of TBI subjects. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available