4.7 Article

One-Pot Synthesis of Brush Copolymers Bearing Stereoregular Helical Polyisocyanides as Side Chains through Tandem Catalysis

Journal

MACROMOLECULES
Volume 48, Issue 1, Pages 81-89

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma502283f

Keywords

-

Funding

  1. National Natural Scientific Foundation of China [21104015, 21172050, 21371043, 51303044, 21304027]
  2. Thousand Young Talents Program
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20130111120013]

Ask authors/readers for more resources

An air-stable phenylethynyl Pd(II) complex containing a polymerizable norbornene unit was designed and synthesized. Such a Pd(II) complex can initiate the living/controlled polymerization of phenyl isocyanide, giving stereoregular poly(phenyl isocyanide)s in high yields with controlled molecular weights and narrow molecular weight distributions. The norbornene unit on the Pd(II) complex can undergo ring-opening metathesis polymerization (ROMP) with Grubbs second-generation catalyst, affording polynorbornene bearing Pd(II) complex pendants under a living/controlled manner. Interestingly, the Pd(II) complex pendants on the isolated polynorbornene are active enough to initiate the living/controlled polymerization of phenyl isocyanides, yielding well-defined brush-like copolymers with polynorbornene backbone and helical poly(phenyl isocyanide) as side chains. P-31 NMR analyses indicate almost all the Pd(II) units on the polynorbornene participated in the polymerization, and the grafting density of the brush copolymer is high. Further studies revealed the brush copolymer can be readily achieved in one-pot via tandem catalysis. By using this method, a range of brush copolymers with different structures and tunable compositions were facilely prepared in high yields with controlled molecular weights and narrow molecular weight distributions. The synthesized brush copolymers were revealed to form worm-like cylindrical morphologies and helical rod architectures in film state by atomic force microscope observations

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available