4.7 Article

In Situ Observation of Ca2+ Diffusion-Induced Superstructure Formation of a Rigid Polyanion

Journal

MACROMOLECULES
Volume 47, Issue 20, Pages 7208-7214

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma501699d

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) [124225006]

Ask authors/readers for more resources

Diffusion of multivalent metallic ions into aqueous solution of rigid, negatively charged macromolecules of high concentration is an effective approach to prepare macroscopically anisotropic hydrogels. However, the mechanism for superstructure formation is still not clear. By observing the mixing process of a small drop of CaCl2 solution with solution of a rigid polyanion, poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), under the polarizing optical microscope, the diffusion profile of Ca2+ and detailed anisotropic gelation process of PBDT are revealed. Diffusion of Ca2+ into the surrounding PBDT solution immediately induces the formation of physical liquid crystalline (LC) gel with concentric alignment of PBDT. The thickness d of this region increases with diffusion time t, obeying the diffusion law d similar to t1/2. A thin ring of constant width (similar to 100 mu m) with radial alignment of PBDT appears at the diffusion/reaction front, ahead of the concentric alignment region. When two drops of CaCl2 fluxes meet, their outside thin rings interact with each other and the PBDT in this contacting region orients +/- 45 degrees to the midline of the two drops. From these observations, we rationally contend that the internal stress induced by the contraction of gel phase is responsible for the ion diffusion-induced PBDT orientations. This structure formation mechanism gives insight into other diffusion-directed anisotropic gelation systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available