4.7 Article

Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures

Journal

MACROMOLECULES
Volume 47, Issue 6, Pages 2037-2043

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma402566g

Keywords

-

Funding

  1. Institute for Collaborative Biotechnologies through U.S. Army Research Office [W911NF-09-0001]
  2. NSF [DMR 1121053]

Ask authors/readers for more resources

Thermoplastic elastomers (TPEs) are designed by embedding discrete glassy or semicrystalline domains in an elastomeric matrix. Typical styrenic-based amorphous TPEs are made of linear ABA-type triblock copolymers, where the volume fraction f of the glassy domains A is typically less than 0.3. This limitation ultimately restricts the range of mechanical strength attainable with these materials. We had previously predicted using self-consistent field theory (SCFT) that A(BA')(n) miktoarm block copolymers with an approximately 8:1 ratio of the A to A' block molecular weights and n >= 3 should exhibit discrete A domains at considerably larger f and offer potential for the combination of high modulus, high recoverable elasticity, and high strength and toughness. Using transmission electron microscopy and small-angle X-ray scattering on model polystyrene-b-polyisoprene (PS PI) miktoarm copolymers, we show that such polymers indeed possess discrete PS domains for f values considerably higher than 0.3. The hexagonal morphology with PS cylinders was achieved for f = 0.5 and n = 3. Mechanical testing indicates that these miktoarm materials are strong, tough, and elastic and thus may be potential candidates for a new generation of thermoplastic elastomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available