4.7 Article

Reversible Transformation of Nanostructured Polymer Particles

Journal

MACROMOLECULES
Volume 46, Issue 17, Pages 7012-7017

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma401398h

Keywords

-

Funding

  1. National Basic Research Program of China [2012CB821500]
  2. National Natural Science Foundation of China [51173056, 91127046]
  3. Excellent Youth Foundation of Hubei Scientific Committee [2012FFA008]

Ask authors/readers for more resources

A reversible transformation of overall shape and internal structure as well as surface composition of nanostructured block copolymer particles is demonstrated by solvent-adsorption annealing. Polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) pupa-like particles with PS and P4VP lamellar domains alternatively stacked can be obtained by self-assembly of the block copolymer under 3D soft confinement. Chloroform, a good solvent for both blocks, is selected to swell and anneal the pupa-like particles suspended in aqueous media. Reversible transformation between pupa-like and onion-like structures of the particles can be readily tuned by simply adjusting the particle/aqueous solution interfacial property. Interestingly, poly(vinyl alcohol) (PVA) concentration in the aqueous media plays a critical role in determining the particle morphology. High level of PVA concentration is favorable for pupa-like morphology, while extremely low concentration of PVA is favorable for the formation of onion-like particles. Moreover, the stimuli-response behavior of the particles can be highly suppressed through selective growth of Au nanoparticles within the P4VP domains. This strategy provides a new concept for the reversible transformation of nanostructured polymer particles, which will find potential applications in the field of sensing, detection, optical devices, drug delivery, and smart materials fabrication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available