4.7 Article

UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation

Journal

MACROMOLECULES
Volume 46, Issue 3, Pages 1054-1065

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma302386w

Keywords

-

Funding

  1. German Research Council (DFG)
  2. Karlsruhe Institute of Technology (KIT)

Ask authors/readers for more resources

A novel triblock macromolecular architecture based on cyclodextrin (CD) complexation is presented. A CD-functionalized biocompatible poly(N-(2-hydroxypropyI)methacrylamide) (PHPMA) building block (3800 <= M-n <= 10 600 g mol(-1) 1.29 <= D-M <= 1.46) and doubly guest-containing poly(N,N-dimethylacrylamide) (PDMAAm) (6400 <= Mn <= 15 700 g mol(-1) 1.06 <= D-M <= 1.15) and poly(N,N-diethylacrylamide) (PDEAAm) (5400 <= M-n <= 12 100 g mol(-1) 1.11 <= D-M <= 1.33) segments were prepared via reversible addition fragmentation chain transfer (RAFT) polymerization and subsequently utilized for the formation of a well-defined supramolecular ABA triblock copolymer. The block formation was evidenced via dynamic light scattering (DLS), nuclear Overhauser effect spectroscopy (NOESY), and turbidity measurements. Furthermore, the connection of the blocks was proven to be temperature responsive and in the case of azobenzene guests responsive to the irradiation with UV light. The application of these stimuli leads to the disassembly of the triblock copolymer, which was shown to be reversible. In the case of PDEAAm containing triblock copolymers, the temperature-induced aggregation was investigated as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available