4.7 Article

Phase Separation of Poly(methyl methacrylate)/Poly(styrene-co-acrylonitrile) Blends with Controlled Distribution of Silica Nanoparticles

Journal

MACROMOLECULES
Volume 45, Issue 20, Pages 8420-8429

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma301186b

Keywords

-

Funding

  1. National Natural Science Foundation of China [50930002, 21074072]
  2. National Basic Research Program of China (973 Program) [2011CB606005]
  3. Program for New Century Excellent Talents in University
  4. SMC project of Shanghai Jiao Tong University

Ask authors/readers for more resources

Effects of selective location of silica nanoparticles on the phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends were investigated via combination of rheological method and optical microscopy. Through grafting polystyrene chain to the surface of silica nanoparticles, the silica nanoparticles were controlled to selectively locate at interfaces or in the PMMA-rich domains. Power-law analysis of the moduli and shifted Cole Cole plots were applied to determine rheological transition temperature (apparent binodal temperature) of blend with near-critical and off-critical compositions for both neat blends and particle-filled blends. The particle location had significant influence on the rheological transition temperature but little impact on optically determined binodal temperature. This discrepancy was discussed through morphology observation via transmission electron microscopy (TEM) for blends under different phase separation conditions. It was found that nanoparticles retard coarsening of morphology during phase separation. The most striking slowdown was found in off-critical blends with nanoparticles located on the interface. On the other hand, nanoparticles preferentially locating in the minor phase could act as nucleation sites but decreased the total number of nuclei. The difference in the rheological transition temperatures is ascribed to the effect of nanoparticles on the components' viscoelasticity and the morphology during phase separation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available