4.7 Article

Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices

Journal

MACROMOLECULES
Volume 45, Issue 11, Pages 4707-4715

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma300463y

Keywords

-

Funding

  1. National Science Foundation (USA) [CBET-0828155]
  2. Swiss National Science Foundation [406240_126046]
  3. Adolphe Merkle Foundation
  4. Swiss National Science Foundation (SNF) [406240_126046] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Biomimetic, stimuli-responsive nanocomposites were made using either poly(styrene-co-butadiene) (SBR) or polybutadiene (PBD) as the hydrophobic, low-modulus matrix and hydrophilic cellulose whiskers isolated from tunicates (TW) as the high-modulus filler. These materials were prepared using a template approach, which involves the formation of a percolating TW network and filling this template with either of the matrix polymers. Dynamic mechanical analysis (DMA) studies of the dry nanocomposite films reveal that the incorporation of TWs into the rubbery polymers increases the tensile storage modulus E significantly. The reinforcement is attributed to the formation of a three-dimensional TW network within the SBR and PBD matrices. The incorporation of the TWs did not affect the main relaxation temperature of the matrix SBR polymer, suggesting weak nanofiller-polymer interactions. Thus, the reinforcement is primarily on account of the nanofiller-nanofiller interactions, which involve hydrogen bonding. Interestingly, submersion of these hydrophobic matrix nanocomposites in water results in dramatic softening, consistent with disengagement of the TW network as a consequence of competitive hydrogen bonding with water. The kinetics of the modulus change and the amount of water uptake were shown to depend on the TW content. Given the hydrophobic nature of the matrices, it is proposed that the TWs create a percolating network of hydrophilic channels within the hydrophobic SBR and PBD matrices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available