4.7 Article

NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films

Journal

MACROMOLECULES
Volume 43, Issue 10, Pages 4733-4743

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma902866x

Keywords

-

Funding

  1. U.S. Department of Energy Office of Science, Office of Basic Energy Sciences
  2. National Science Foundation
  3. Army Research Office [W911NF-05-1-0339]
  4. The Office of Naval Research [N00014-02-1-0170]
  5. Department of Defense's Strategic Environmental Research and Development Program (SERDP) [WP-1454]
  6. EU
  7. NSF [DMR-0704539]

Ask authors/readers for more resources

NEXAFS spectroscopy was used to probe the surface composition and under-water surface reconstruction of thin films of comb-like diblock copolymers with cylindrical and spherical microphases. The polymers consisted of a polystyrene block, and a second block prepared from a styrenic monomer grafted with fluoroalkyl-tagged poly(ethylene glycol) side chains. Compositional depth profiling of the microphase separated block copolymer films, in the top 1-3 nm of the film, was performed to understand the role of block copolymer microstructure and self-assembly on surface composition. Using experimentally determined concentration profiles, the surface concentration of phenyl ring carbon atoms was quantified and compared with those of homopolymer and random copolymer controls. The carbon atoms from the relatively high surface energy phenyl groups were depleted or excluded from the surface, in favor of the low surface-energy fluoroalkyl groups. While it is expected that block copolymer surfaces will be completely covered by a wetting lamellar layer oft he lower surface energy block, a significant amount of the higher surface energy polystyrene block was found to be present in the surface region of the cylinder-forming block copolymer. Evidently, the spontaneous formation of the cylindrical polystyrene micro-domains in the near-surface region compensated for the lowering of the free energy that could have been achieved by completely covering the surfaces with a lamellar layer of the lower surface energy fluorinated block. All surfaces underwent molecular reconstruction after immersion in water. The experimental concentration depth profiles indicated an increased surface depletion of phenyl ring carbon atoms in the water-immersed thin films, due to the tendency of hydrophilic PEG side groups to be present at the polymer water interface. Such a detailed characterization of the outermost layers of the block copolymer surfaces was possible because of the exceptional depth resolution of the NEXAFS depth profiling technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available