4.7 Article

Crystal Structure of A-amylose: A Revisit from Synchrotron Microdiffraction Analysis of Single Crystals

Journal

MACROMOLECULES
Volume 42, Issue 4, Pages 1167-1174

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma801789j

Keywords

-

Ask authors/readers for more resources

The three-dimensional structure of A-amylose crystals, as a model of the crystal domains of A-starch granule was revised using synchrotron radiation microdiffraction data collected from individual micron-sited single crystals. The resulting data sets allowed a determination of the structure with conventional X-ray structure determination techniques normally used for small molecules and not for polymers. Whereas the gross features of this improved structure do not differ extensively from previous structure determination, the high resolution of the diffraction diagrams, which is unusual for a crystalline polymer, allowed the resolution of important new fine details, These include a distortion of the amylose double helices resulting from the occurrence of two intracrystalline molecules of water and a tight network of hydrogen bonds involving each of the primary and secondary hydroxyl groups of the glucosyl moieties. Water Molecules are located in discrete pockets that do not interfere with one another. In addition, the refinement of the new structure indicates a parallel-down organization of the amylose molecules Within the unit cell as opposed to the previous parallel-up model. This new feature indicates that within the crystals the nonreducing ends of the amylose molecules are oriented toward the c-axis direction of the unit cell. The description of this geometry is important to correlate the crystallography of the granules of A-starch with their ultrastructure and their mode of biosynthesis. Here, we present for the first time the resolution of the structure of a polymer crystal front a full X-ray data set collected on micron-sized polymer single crystals using synchrotron radiation microdiffraction. This achievement is a substantial advance, which opens the way to many more Studies since the technique Of growing polymer and biopolymer single crystals is well established.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available