4.7 Article

Semiconductor block copolymer nanocomposites with lamellar morphology via self-organization

Journal

MACROMOLECULES
Volume 41, Issue 16, Pages 6081-6088

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma8007459

Keywords

-

Funding

  1. DFG
  2. SOHYDs
  3. SFB [481]
  4. German Excellence Initiative
  5. LMUexcellent

Ask authors/readers for more resources

Novel semiconductor block copolymers were synthesized using nitroxide-mediated radical polymerization (NMRP). They are comprised of a hole conductor block carrying tetraphenylbenzidine pendant units (PVDMTPD) and a second poly(4-vinylpyridine) (P4VP) block suitable for the preferential incorporation of n-type semiconductor nanocrystals. The conditions of NMRP for both monomers were optimized in order to get macroinitiators with well-defined molecular weights and very low polydispersity (< 1.2). The resulting block polymers exhibit a lamellar morphology due to microphase separation. Furthermore, semiconductor nanocomposites were prepared using these diblock copolymers and light harvesting CdSe:Te nanocrystals, and their bulk morphologies were characterized by TEM. This new hybrid nanocomposite material maintains the original lamellar structure in which the hole conductor domains are separated from electron conducting/light harvesting nanocrystals that are confined in the P4VP domains. Thus, the challenging task of applying the block copolymer strategy to obtain fully functionalized semiconductor hybrid nanocomposites with morphological control and stability has been realized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available