4.7 Article

Enhancement of Cellular Uptake and Antitumor Efficiencies of Micelles with Phosphorylcholine

Journal

MACROMOLECULAR BIOSCIENCE
Volume 11, Issue 10, Pages 1416-1425

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.201100111

Keywords

cytotoxicity; drug delivery systems; internalization; phosphorylcholine; self-assembly

Funding

  1. National Nature Science Foundation of China [50873065]
  2. International S&T Cooperation Program of China [2006DFA53470]

Ask authors/readers for more resources

Internalization of drug delivery micelles into cancer cells is a crucial step for antitumor therapeutics. Novel amphiphilic star-shaped copolymers with zwitterionic phosphorylcholine (PC) block, 6-arm star poly(epsilon-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) (6sPCL-b-PMPC), have been developed for encapsulation of poorly water-soluble drugs and enhancement of their cellular uptake. The star-shaped copolymers were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The copolymers self-assembled to form spherical micelles with low critical micelle concentration (CMC). The sizes of the micelles range from 80 to 170nm and increase 30 approximate to 80% after paclitaxel (PTX) loading. Labeled with fluorescein isothiocyanate (FITC), the micelles were confirmed by fluorescence microscopy to have been internalized efficiently by tumor cells. Direct visualization of the micelles within tumor cells by transmission electron microscopy (TEM) confirmed that the 6sPCL-b-PMPC micelles were more efficiently uptaken by tumor cells compared to PCL-b-PEG micelles. When incorporated with PTX, the 6sPCL-b-PMPC micelles show much higher cytotoxicity against Hela cells than PCL-b-PEG micelles, in response to the higher efficiency of cellular uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available